Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
ACS Appl Mater Interfaces ; 16(15): 19730-19741, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591140

ABSTRACT

Metal-organic framework materials can be converted into carbon-based nanoporous materials by pyrolysis, which have a wide range of applications in energy storage. Here, we design special interface engineering to combine the carbon skeleton and nitrogen-doped carbon nanotubes (CNTs) with the transition metal compounds (TMCs) well, which mitigates the bulk effect of the TMCs and improves the conductivity of the electrodes. Zeolitic imidazolate framework-67 is used as a precursor to form a carbon skeleton and a large number of nitrogen-doped CNTs by pyrolysis followed by the in situ formation of Co3O4 and CoS2, and finally, Co3O4@CNTs and CoS2@CNTs are synthesized. The obtained anode electrodes exhibit a long cycle life and high-rate properties. In lithium-ion batteries (LIBs), Co3O4@CNTs have a high capacity of 581 mAh g-1 at a high current of 5 A g-1, and their reversible capacity is still 1037.6 mAh g-1 after 200 cycles at 1 A g-1. In sodium-ion batteries (SIBs), CoS2@CNTs have a capacity of 859.9 mAh g-1 at 0.1 A g-1 and can be retained at 801.2 mAh g-1 after 50 cycles. The unique interface engineering and excellent electrochemical properties make them ideal anode materials for high-rate, long-life LIBs and SIBs.

2.
Talanta ; 274: 126004, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38564824

ABSTRACT

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.


Subject(s)
Fluorescent Dyes , Reactive Nitrogen Species , Reactive Oxygen Species , Rhodamines , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Reactive Nitrogen Species/analysis , Humans , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , Optical Imaging , Animals , Sulfur/chemistry , Sulfur/analysis
3.
Hum Cell ; 37(3): 593-606, 2024 May.
Article in English | MEDLINE | ID: mdl-38538930

ABSTRACT

Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.


Subject(s)
Neoplasms , Humans , Stress, Mechanical , Neoplasms/genetics , Neoplasms/pathology , Carcinogenesis , Ion Channels/genetics , Cold Temperature
4.
Liver Int ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436551

ABSTRACT

BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI and RFS using preoperative MRI scans. METHODS: Utilising a retrospective dataset of 725 HCC patients from seven institutions, we developed and validated a multitask deep learning model focused on predicting MVI and RFS. The model employs a transformer architecture to extract critical features from preoperative MRI scans. It was trained on a set of 234 patients and internally validated on a set of 58 patients. External validation was performed using three independent sets (n = 212, 111, 110). RESULTS: The multitask deep learning model yielded high MVI prediction accuracy, with AUC values of 0.918 for the training set and 0.800 for the internal test set. In external test sets, AUC values were 0.837, 0.815 and 0.800. Radiologists' sensitivity and inter-rater agreement for MVI prediction improved significantly when integrated with the model. For RFS, the model achieved C-index values of 0.763 in the training set and ranged between 0.628 and 0.728 in external test sets. Notably, PA-TACE improved RFS only in patients predicted to have high MVI risk and low survival scores (p < .001). CONCLUSIONS: Our deep learning model allows accurate MVI and survival prediction in HCC patients. Prospective studies are warranted to assess the clinical utility of this model in guiding personalised treatment in conjunction with clinical criteria.

5.
Chin J Integr Med ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386252

ABSTRACT

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.

6.
Article in English | MEDLINE | ID: mdl-38243974

ABSTRACT

OBJECTIVE: To investigate the effect of high blood glucose on the decline in the estimated glomerular filtration rate (eGFR) in the elderly. METHODS: We compared the decline in eGFR of diabetic and non-diabetic groups in the noninterventional state and analyzed the effect of hyperglycemia on the decline in eGFR among the elderly in a retrospective analysis of 1,223 cases of elderly people aged 65 years or older with a 4-year follow-up period. RESULTS: The prevalence of diabetes in the elderly increased significantly from 12.67% in 2017 to 16.68% in 2021. The rate of decline in eGFR in patients with diabetes was higher than in the population without diabetes, at 9.29% and 5.32%, respectively (both p <0.05). CONCLUSION: The results of this study revealed that the prevalence of diabetes in the elderly increased significantly, and there is a more rapid decrease in the eGFR levels in those with diabetes than those without diabetes.

7.
Phytomedicine ; 123: 155195, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956635

ABSTRACT

BACKGROUND: Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE: This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS: A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS: H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1ß, and activating the AMPK pathway. CONCLUSION: This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.


Subject(s)
Alkaloids , Houttuynia , Oils, Volatile , Plants, Medicinal , Houttuynia/chemistry , Plant Extracts/pharmacology , Phytochemicals/pharmacology , Flavonoids/pharmacology , Ethnopharmacology
8.
Mol Neurobiol ; 61(1): 104-119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37584822

ABSTRACT

Spinal cord injury (SCI) is a severe and disabling injury of the central nervous system, with complex pathological mechanisms leading to sensory and motor dysfunction. Pathological processes, such as oxidative stress, inflammatory response, apoptosis, and glial scarring are important factors that aggravate SCI. Therefore, the inhibition of these pathological processes may contribute to the treatment of SCI. Currently, the pathogenesis of SCI remains under investigation as SCI treatment has not progressed considerably. Resveratrol, a natural polyphenol with anti-inflammatory and antioxidant properties, is considered a potential therapeutic drug for various diseases and plays a beneficial role in nerve damage. Preclinical studies have confirmed that signaling pathways are closely related to the pathological processes in SCI, and resveratrol is believed to exert therapeutic effects in SCI by activating the related signaling pathways. Based on current research on the pathways of resveratrol and its role in SCI, resveratrol may be a potentially effective treatment for SCI. This review summarizes the role of resveratrol in promoting the recovery of nerve function by regulating oxidative stress, inflammation, apoptosis, and glial scar formation in SCI through various mechanisms and pathways, as well as the deficiency of resveratrol in SCI research and the current and anticipated research trends of resveratrol. In addition, this review provides a background for further studies on the molecular mechanisms of SCI and the development of potential therapeutic agents. This information could also help clinicians understand the known mechanisms of action of resveratrol and provide better treatment options for patients with SCI.


Subject(s)
Spinal Cord Injuries , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Spinal Cord Injuries/pathology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology , Polyphenols/pharmacology , Spinal Cord/metabolism
9.
Small ; 20(1): e2305322, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641186

ABSTRACT

Solid-state batteries have become the most anticipated option for compatibility with high-energy density and safety. In situ polymerization, a novel strategy for the construction of solid-state systems, has extended its application from solid polymer electrolyte systems to other solid-state systems. This review summarizes the application of in situ polymerization strategies in solid-state batteries, which covers the construction of polymer, the formation of the electrolyte system, and the design of the full cell. For the polymer skeleton, multiple components and structures are being chosen. In the construction of solid polymer electrolyte systems, the choice of initiator for in situ polymerization is the focus of this review. New initiators, represented by lithium salts and additives, are the preferred choice because of their ability to play more diverse roles, while the coordination with other components can also improve the electrical properties of the system and introduce functionalities. In the construction of entire solid-state battery systems, the application of in situ polymerization to structure construction, interface construction, and the use of separators with multiplex functions has brought more possibilities for the development of various solid-state systems and even the perpetuation of liquid electrolytes.

10.
Mol Neurobiol ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066400

ABSTRACT

Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.

11.
Ecotoxicol Environ Saf ; 267: 115652, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37924801

ABSTRACT

Bisphenol S (BPS) exerts toxic effects on hippocampal HT22 cells, endocrine secretion, and reproductive capacity. However, whether BPS exerts toxic effects on the heart requires further investigation. Therefore, we investigated the effects of BPS on mouse heart tissues and predicted possible underlying molecular mechanisms of action. Our study showed that BPS induced apoptosis, increased oxidative stress response. Using electron microscopy, we found that BPS disrupted sarcomere arrangement in myocardial cells and caused reduction in the number of plasmalemmal vesicles in endothelial cells in the mouse heart tissues. Also, BPS increased expression levels of P-NF-κB in mouse heart tissues. Furthermore, we found that BPS induced reactive oxygen species (ROS) generation, NF-κB activation, promoted apoptosis, elevated expression of BAX and Caspase 3, and decreased expression of Bcl-2 in H9c2 cells and HUVECs. However, after the addition of n-acetylcysteine or pyrrolidinedithiocarbamate, ROS generation, NF-κB activation, apoptosis, and expression of BAX and Caspase 3 were reduced, whereas expression of Bcl-2 was elevated. Our results demonstrated that BPS induced apoptosis of myocardial and endothelial cells through oxidative stress by activation of NF-κB signaling pathway.


Subject(s)
Endothelial Cells , NF-kappa B , Humans , Animals , Mice , Caspase 3 , Reactive Oxygen Species , bcl-2-Associated X Protein , Myocytes, Cardiac
12.
ACS Sens ; 8(11): 4020-4030, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37917801

ABSTRACT

Salicylic acid (SA) is one of the chemical molecules, involved in plant growth and immunity, thereby contributing to the control of pests and pathogens, and even applied in fruit and vegetable preservation. However, only a few tools have ever been designed or executed to understand the physiological processes induced by SA or its function in plant immunity and residue detection in food. Hence, three Rh6G-based fluorogenic chemosensors were synthesized to detect phytohormone SA based on the "OFF-ON" mechanism. The probes showed high selectivity, ultrafast response time (<60 s), and nanomolar detection limit for SA. Moreover, the probe possessed outstanding profiling that can be successfully used for SA imaging of callus and plants. Furthermore, the fluorescence pattern indicated that SA could occur in the distal transport in plants. These remarkable results contribute to improving our understanding of the multiple physiological and pathological processes involved in SA for plant disease diagnosis and for the development of immune activators. In addition, SA detection in some agricultural products used probes to extend the practical application because its use is prohibited in some countries and is harmful to SA-sensitized persons. Interestingly, the as-obtained test paper displayed that SA could be imaged by ultraviolet (UV) and was directly visible to the naked eye. Given the above outcomes, these probes could be used to monitor SA in vitro and in vivo, including, but not limited to, plant biology, food residue detection, and sewage detection.


Subject(s)
Plant Growth Regulators , Salicylic Acid , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Plant Growth Regulators/chemistry
13.
Animals (Basel) ; 13(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37893966

ABSTRACT

In order to achieve goat localization to help prevent goats from wandering, we proposed an efficient target localization method based on machine vision. Albas velvet goats from a farm in Ertok Banner, Ordos City, Inner Mongolia Autonomous Region, China, were the main objects of study. First, we proposed detecting the goats using a shallow convolutional neural network, ShallowSE, with the channel attention mechanism SENet, the GeLU activation function and layer normalization. Second, we designed three fully connected coordinate regression network models to predict the spatial coordinates of the goats. Finally, the target detection algorithm and the coordinate regression algorithm were combined to localize the flock. We experimentally confirmed the proposed method using our dataset. The proposed algorithm obtained a good detection accuracy and successful localization rate compared to other popular algorithms. The overall number of parameters in the target detection algorithm model was only 4.5 M. The average detection accuracy reached 95.89% and the detection time was only 8.5 ms. The average localization error of the group localization algorithm was only 0.94 m and the localization time was 0.21 s. In conclusion, the method achieved fast and accurate localization, which helped to rationalize the use of grassland resources and to promote the sustainable development of rangelands.

15.
Int J Neural Syst ; 33(11): 2350057, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37771298

ABSTRACT

Radiotherapy is one of the leading treatments for cancer. To accelerate the implementation of radiotherapy in clinic, various deep learning-based methods have been developed for automatic dose prediction. However, the effectiveness of these methods heavily relies on the availability of a substantial amount of data with labels, i.e. the dose distribution maps, which cost dosimetrists considerable time and effort to acquire. For cancers of low-incidence, such as cervical cancer, it is often a luxury to collect an adequate amount of labeled data to train a well-performing deep learning (DL) model. To mitigate this problem, in this paper, we resort to the unsupervised domain adaptation (UDA) strategy to achieve accurate dose prediction for cervical cancer (target domain) by leveraging the well-labeled high-incidence rectal cancer (source domain). Specifically, we introduce the cross-attention mechanism to learn the domain-invariant features and develop a cross-attention transformer-based encoder to align the two different cancer domains. Meanwhile, to preserve the target-specific knowledge, we employ multiple domain classifiers to enforce the network to extract more discriminative target features. In addition, we employ two independent convolutional neural network (CNN) decoders to compensate for the lack of spatial inductive bias in the pure transformer and generate accurate dose maps for both domains. Furthermore, to enhance the performance, two additional losses, i.e. a knowledge distillation loss (KDL) and a domain classification loss (DCL), are incorporated to transfer the domain-invariant features while preserving domain-specific information. Experimental results on a rectal cancer dataset and a cervical cancer dataset have demonstrated that our method achieves the best quantitative results with [Formula: see text], [Formula: see text], and HI of 1.446, 1.231, and 0.082, respectively, and outperforms other methods in terms of qualitative assessment.


Subject(s)
Rectal Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/radiotherapy , Neural Networks, Computer
16.
Org Biomol Chem ; 21(33): 6783-6788, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37565619

ABSTRACT

Salicylic acid (SA) is a key hormone that regulates plant growth and immunity, and understanding the physiologic processes induced by SA enables the development of highly pathogen-resistant crops. Here, we report the synthesis of three new SA-sensors (R1-R3) from hydroxyphenol derivatives of a rhodamine-acylhydrazone scaffold and their characterization by NMR and HRMS. Spectroscopic analyses revealed that structural variations in R1-R3 resulted in sensors with different sensitivities for SA. Sensor R2 (with the 3-hydroxyphenyl modification) outperformed R1 (2-hydroxyphenyl) and R3 (4-hydroxyphenyl). The SA-detection limit of R2 is 0.9 µM with an ultra-fast response time (<60 s). In addition, their plant imaging indicated that designed sensor R2 is useful for the further study of SA biology and the discovery and development of new inducers of plant immunity.


Subject(s)
Plant Cells , Salicylic Acid , Rhodamines/chemistry , Salicylic Acid/analysis , Salicylic Acid/chemistry , Plant Cells/chemistry , Coloring Agents , Plants
17.
Eur J Med Chem ; 259: 115688, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37544188

ABSTRACT

Neuroinflammation mediated by microglia activation leads to various neurodegenerative and neurological disorders. In order to develop more and better options for this disorders, a series of 3,4-dihydrobenzo[b]oxepin-5(2H)-one derivatives (BZPs, 6-19) and novel 1,4,5,6-tetrahydrobenzo[2,3]oxepino[4,5-d]pyrimidin-2-amine derivatives (BPMs, 20-33) were synthesized and screened the anti-neuroinflamamtion effects. 3,5-bis-trifluoromethylphenyl-substituted BPM 29 showed more potent anti-neuroinflammatory activity and no toxicity to BV2 microglia cells in vitro. 29 significantly reduced the number of M1 phenotype of microglia cells, but significantly increased the number of M2 phenotype of microglia cells in lipopolysaccharide (LPS)-induced BV2 microglia cells. 29 significantly reduced the secretion of inflammatory cytokines (IL-18, IL-1ß, TNF-α), but increased the secretion of anti-inflammatory cytokines (IL-10) from LPS-induced BV2 microglia cells. Also, 29 inhibited the NOD-like receptor NLRP3 inflammasome formation, and down-regulated the expression of M2 isoform of pyruvate kinase in LPS-induced BV2 microglia cells. In vivo, 29 reduced the neuroinflammation in cuprizone-induced inflammatory and demyelinating mice by reducing the expression of inducible nitric-oxide synthase, but increased the expression of CD206. Taken together, 29 might be a prospective anti-neuroinflammatory compound for neuroinflammatory and demyelinating disease by alleviating microglia activation.


Subject(s)
Microglia , Neuroinflammatory Diseases , Mice , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Cytokines/metabolism , Amines/pharmacology , NF-kappa B/metabolism
18.
Materials (Basel) ; 16(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37512200

ABSTRACT

This research aims to improve the durability of skid resistance of asphalt pavement from the perspective of coarse aggregates based on on-site investigation. Firstly, the skid resistance of six representative actual roads was tested during two years by employing the Dynamic Friction Tester and the attenuation characteristics of skid resistance of different types of asphalt pavements were analyzed. Secondly, core samples were drilled onsite and coarse aggregates were extracted from the surface layer of the core samples. The morphological parameters of coarse aggregates were collected by a "backlighting photography" system and three-dimensional profilometer, and the variation rules of angularity and micro-texture of coarse aggregates were investigated. Finally, the correlation between the morphological characteristics of coarse aggregates and the pavement skid resistance was established based on the grey correlation entropy. The research results show that with the increase in service time, the attenuation rate of skid resistance of asphalt pavement gradually slows down; the angularity of coarse aggregates gradually decreases, and the micro-texture on the wearing surface gradually wears away. The grey correlation entropy between all the micro-texture indexes of coarse aggregates and dynamic friction coefficient, as well as between the roundness and skid resistance is more than 0.7, whereas the correlation between other evaluation indicators and the dynamic friction coefficient is poor, indicating that compared with the angularity of coarse aggregates, the micro-texture affects the skid resistance of actual asphalt pavement more greatly. In engineering applications, the use of coarse gradation, coarse aggregates with high roughness or high anti-wear performance can slow down the attenuation of pavement skid resistance, so that the pavement can maintain superior long-term anti-skidding performance.

19.
J Sci Food Agric ; 103(14): 7273-7283, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37450639

ABSTRACT

BACKGROUND: Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related ß-galactosidase (SA-ß-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS: Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-ß-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION: Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Toll-Like Receptor 4 , Animals , Mice , Toll-Like Receptor 4/genetics , Ecosystem , RNA, Ribosomal, 16S , NF-kappa B/genetics , Homeostasis , Signal Transduction , Inflammation
20.
Cell Mol Life Sci ; 80(8): 217, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468762

ABSTRACT

Spermatogenesis is a complicated process of germ cell differentiation that occurs within the seminiferous tubule in the testis. Peritubular myoid cells (PTMCs) produce major components of the basement membrane that separates and ensures the structural integrity of seminiferous tubules. These cells secrete niche factors to promote spermatogonial stem cell (SSC) maintenance and mediate androgen signals to direct spermatid development. However, the regulatory mechanisms underlying the identity and function of PTMCs have not been fully elucidated. In the present study, we showed that the expression of pancreatic lipase-related protein 2 (Pnliprp2) was restricted in PTMCs in the testis and that its genetic ablation caused age-dependent defects in spermatogenesis. The fertility of Pnliprp2 knockout animals (Pnliprp2-/-) was normal at a young age but declined sharply beginning at 9 months. Pnliprp2 deletion impaired the homeostasis of undifferentiated spermatogonia and severely disrupted the development and function of spermatids. Integrated analyses of single-cell RNA-seq and metabolomics data revealed that glyceride metabolism was changed in PTMCs from Pnliprp2-/- mice. Further analysis found that 60 metabolites were altered in the sperm of the Pnliprp2-/- animals; notably, lipid metabolism was significantly dysregulated. Collectively, these results revealed that Pnliprp2 was exclusively expressed in PTMCs in the testis and played a novel role in supporting continual spermatogenesis in mice. The outcomes of these findings highlight the function of lipid metabolism in reproduction and provide new insights into the regulation of PTMCs in mammals.


Subject(s)
Semen , Testis , Animals , Male , Mice , Lipase/genetics , Mammals , Spermatogenesis/genetics , Spermatogonia , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...